Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 76: 101794, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37604246

RESUMO

OBJECTIVE: Despite great advances in obesity therapeutics in recent years, there is still a need to identify additional therapeutic targets for the treatment of this disease. We previously discovered a signature of genes, including Chloride intracellular channel 1 (Clic1), whose expression was associated with drug-induced weight gain, and in these studies, we assess the effect of Clic1 inhibition on food intake and body weight in mice. METHODS: We studied the impact of Clic1 inhibition in mouse models of binge-eating, diet-induced obese mice and genetic models of obesity (Magel2 KO mice). RESULTS: Clic1 knockout (KO) mice ate significantly less and had a lower body weight than WT littermates when either fed chow or high fat diet. Furthermore, pharmacological inhibition of Clic1 in diet-induced obese mice resulted in suppression of food intake and promoted highly efficacious weight loss. Clic1 inhibition also reduced food intake in binge-eating models and hyperphagic Magel2 KO mice. We observed that chronic obesity resulted in a significant change in subcellular localization of Clic1 with an increased ratio of Clic1 in the membrane in the obese state. These observations provide a novel therapeutic strategy to block Clic1 translocation as a potential mechanism to reduce food intake and lower body weight. CONCLUSIONS: These studies attribute a novel role of Clic1 as a driver of food intake and overconsumption. In summary, we have identified hypothalamic expression of Clic1 plays a key role in food intake, providing a novel therapeutic target to treat overconsumption that is the root cause of modern obesity.


Assuntos
Obesidade , Aumento de Peso , Animais , Camundongos , Camundongos Obesos , Peso Corporal , Camundongos Knockout , Ingestão de Alimentos , Canais de Cloreto/genética , Antígenos de Neoplasias , Proteínas
2.
Psychoneuroendocrinology ; 113: 104551, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31884319

RESUMO

Antipsychotic drugs (APD) have clinically important, adverse effects on metabolism that limit their therapeutic utility. Pancreatic beta cells produce dopamine and express the D2 dopamine receptor (D2R). As D2R antagonists, APDs alter glucose-stimulated insulin secretion, indicating that dopamine likely plays a role in APD-induced metabolic dysfunction. Insulin secretion from beta cells is also modulated by the circadian clock. Disturbed circadian rhythms cause metabolic disturbances similar to those observed in APD-treated subjects. Given the importance of dopamine and circadian rhythms for beta cells, we hypothesized that the beta cell dopamine system and circadian clock interact and dually regulate insulin secretion, and that circadian manipulations may alter the metabolic impact of APDs. We measured circadian rhythms, insulin release, and the impact of dopamine upon these processes in beta cells using bioluminescent reporters. We then assessed the impact of circadian timing on weight gain and metabolic outcomes in mice treated with the APD sulpiride at the onset of light or dark. We found that molecular components of the dopamine system were rhythmically expressed in beta cells. D2R stimulation by endogenous dopamine or the agonist bromocriptine reduced circadian rhythm amplitude, and altered the temporal profile of insulin secretion. Sulpiride caused greater weight gain and hyperinsulinemia in mice when given in the dark phase compared to the light phase. D2R-acting drugs affect circadian-dopamine interactions and modulate beta cell metabolic function. These findings identify circadian timing as a novel and important mechanism underlying APD-induced metabolic dysfunction, offering new possibilities for therapeutic interventions.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Glicemia/metabolismo , Bromocriptina/farmacologia , Ritmo Circadiano/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Feminino , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Levodopa/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores de Dopamina D2/fisiologia , Sulpirida/farmacologia , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...